ALLER AU CONTENU
Le portail de la formation tout au long de la vie
LU
DE
EN
FR
PT
Vous êtes ici: Accueil > Formations > Elgon

Designing and Implementing a Data Science Solution on Azure

3 jour(s)

Objectifs

Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure.

Contenu

Module 1: Getting Started with Azure Machine Learning

In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace.

Lessons

  • Introduction to Azure Machine Learning
  • Working with Azure Machine Learning

After completing this module, you will be able to

  • Provision an Azure Machine Learning workspace
  • Use tools and code to work with Azure Machine Learning
Module 2: No-Code Machine Learning

This module introduces the Automated Machine Learning and Designer visual tools, which you can use to train, evaluate, and deploy machine learning models without writing any code.

Lessons

  • Automated Machine Learning
  • Azure Machine Learning Designer

After completing this module, you will be able to

  • Use automated machine learning to train a machine learning model
  • Use Azure Machine Learning designer to train a model
Module 3: Running Experiments and Training Models

In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models.

Lessons

  • Introduction to Experiments
  • Training and Registering Models

After completing this module, you will be able to

  • Run code-based experiments in an Azure Machine Learning workspace
  • Train and register machine learning models
Module 4: Working with Data

Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments.

Lessons

  • Working with Datastores
  • Working with Datasets

After completing this module, you will be able to

  • Create and use datastores
  • Create and use datasets
Module 5: Working with Compute

One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs.

Lessons

  • Working with Environments
  • Working with Compute Targets

After completing this module, you will be able to

  • Create and use environments
  • Create and use compute targets
Module 6: Orchestrating Operations with Pipelines

Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module.

Lessons

  • Introduction to Pipelines
  • Publishing and Running Pipelines

After completing this module, you will be able to

  • Create pipelines to automate machine learning workflows
  • Publish and run pipeline services
Module 7: Deploying and Consuming Models

Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing.

Lessons

  • Real-time Inferencing
  • Batch Inferencing
  • Continuous Integration and Delivery

After completing this module, you will be able to

  • Publish a model as a real-time inference service
  • Publish a model as a batch inference service
  • Describe techniques to implement continuous integration and delivery
Module 8: Training Optimal Models

By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data.

Lessons

  • Hyperparameter Tuning
  • Automated Machine Learning

After completing this module, you will be able to

  • Optimize hyperparameters for model training
  • Use automated machine learning to find the optimal model for your data
Module 9: Responsible Machine Learning

Data scientists have a duty to ensure they analyze data and train machine learning models responsibly; respecting individual privacy, mitigating bias, and ensuring transparency. This module explores some considerations and techniques for applying responsible machine learning principles.

Lessons

  • Differential Privacy
  • Model Interpretability
  • Fairness

After completing this module, you will be able to

  • Apply differential provacy to data analysis
  • Use explainers to interpret machine learning models
  • Evaluate models for fairness
Module 10: Monitoring Models

After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data.

Lessons

  • Monitoring Models with Application Insights
  • Monitoring Data Drift

After completing this module, you will be able to

  • Use Application Insights to monitor a published model
  • Monitor data drift

Public cible

A qui s'adresse la formation?

This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud.

 
Prérequis

Successful Azure Data Scientists start this role with a fundamental knowledge of cloud computing concepts, and experience in general data science and machine learning tools and techniques.

Specifically:
  • Creating cloud resources in Microsoft Azure.
  • Using Python to explore and visualize data.
  • Training and validating machine learning models using common frameworks like Scikit-Learn, PyTorch, and TensorFlow.
  • Working with containers

Evaluation

Certificat, diplôme

Certificat de fin de formation délivré par ELGON

Voir les coordonnées de l'organisme
Partager sur

 



Le contenu de ce descriptif de formation est de la seule responsabilité de son auteur, l'organisme de formation Elgon.

Imprimer Tout voir/cacher Envoyer à un ami
Voir les coordonnées de l'organisme
Caractéristiques
Organisation Formation inter et intra-entreprise

En présentiel ou en classe virtuelle

Supports

Support de cours officiel Microsoft

Langues de prestation
Utilisation des cookies

lifelong-learning.lu utilise des cookies pour vous offrir une expérience utilisateur de qualité, mesurer l’audience, optimiser les fonctionnalités des réseaux sociaux et vous proposer du contenu personnalisé.

En poursuivant votre navigation sur ce site, vous acceptez l’utilisation de cookies dans les conditions prévues par notre politique en la matière. En savoir plus.

Cookies nécessaires
Ces cookies permettent d'utiliser les principales fonctionnalités de notre site (par exemple l'accès à votre espace réservé). Sans ces cookies, vous ne pourrez pas utiliser notre site normalement.
Statistiques
Ces cookies permettent d'établir des statistiques de fréquentation de notre site. Les désactiver nous empêche de suivre et d'améliorer la qualité de nos services.
Publicité ciblée
Ces cookies permettent de vous proposer sur internet et les réseaux sociaux des informations et des offres de formation qui répondent mieux à vos besoins.

Consulter notre politique d’utilisation des cookies

Accepter tout Paramétrer les cookies
Veuillez patienter...